Enduring Software Development Myths

I’ve been asked more than once about software development myths, and I’ve run into plenty over the years. Here is a (non-exhaustive) list of some of the myths I’ve seen people believe. I’ve tried to focus on enduring myths, rather than short-term fads (like “Blockchain is a broadly applicable technology”).

Myths Management Believes

adult-businesswoman-company-325924

1. Every manager has read ‘The Mythical Man-Month’ and thinks they understand that adding more developers to an already-late project tends to make it later. However, they will still do it, apparently believing that some combination of proper management, having good people, and the specifics of a project mean it doesn’t apply in their situation.

2. Management also has a tendency to believe that large, complex software systems get ‘finished’ and then become a cash-cow, bringing in an ever-increasing revenue stream for fixed costs. Even if they do account for increasing support and maintenance costs, they rarely consider that continuing innovation and development is required to keep a product competitive.

3. Managers sometimes believes that the primary role of a developer is to translate specification into code. They don’t understand the numerous design decisions involved, the trade-offs being made, the non-functional requirements being considered. I have never once in my career encountered a specification which considered the sort of logging detail required to diagnose the types of system failures which might occur – and yet that is a key component of writing good code. Every developer runs into minor details from day to day which require assumptions or decisions to be made – and a good developer should be tracking those, communicating them, and ensuring the right people are involved in the right decisions, while being shielded from the bulk of less-important ones.

4. I have frequently run into managers who believe that their developers are not politically savvy, or that they all have poor networking skills. This can lead them to interact with other parts of the organisation in a way which under-estimates the contribution of the development team (see 3). When managers do this, their team does find out about it, and it creates resentment.

5. Managers sometimes think that developers within their team are roughly fungible. Managers usually understand that different developers have different areas of expertise and levels of experience, but they often underestimate the impact. They don’t realise that it can have not a 2x effect, but a 5x or greater effect – and that effect is not limited to time, but also to quality (but see myth #2 under “Myths Developers Believe”, below).

6. “All platforms, languages, and third-party systems are roughly equivalent” or “This specific platform, language, or third-party system will fix all of our problems”. I have run into both over the years. The former leads to upper management thinking the selection of a third-party provider such as a cloud host or database platform is purely a business decision and will have no technical impact. The latter can result in management embarking on costly technical projects to no benefit (“we have to re-write our entire codebase into [language]“ or “we need to move all of our data into MongoDB”).

Myths Developers Believe

devops-photo-m1. Developers often believe that management doesn’t have anything to contribute, or that they’re useless or unskilled. Notwithstanding the above myths, managers can make significant contributions and many of them do really know what they’re doing. The good ones shield developers from distraction, ensure they have proper equipment and software, manage outwards to get realistic (and, importantly, low-stress) deadlines, communicate early and mitigate the effects of missed deadlines, justify budgets and pay increases, bring in appropriate consultants to address short-term skill gaps, ensure meetings minimise disruption, and do countless other things to make projects run more smoothly.

2. Developers often believe in 10x or ‘Rockstar’ developers. Some developers can be significantly more productive than others, but this is usually just a matter of experience and knowledge. It is also often specific to particular topics. For example, I used to do all of my team’s low-level network programming – many on the team considered it an impenetrable field and thought they weren’t capable of doing it. A while ago, though, I took one of our juniors aside and spent some time teaching him what was involved. He is now nearly as productive as me in that area, as long as he doesn’t go too long without working in it. Once he’s relearned the skills a few times, they’ll become a permanent part of his skillset. He’ll then be a 10x programmer – but only when working on low-level networking code, and only when compared to a developer who hasn’t spent much time on that specialty.

3. “Most developers are much better than me.” Known as Imposter Syndrome, developers are particularly prone to it, due to developer myth 2. It is especially common in generalist-type roles, where a developer may go long stretches without working on the sorts of things he or she is particularly good at. Instead of treating these times as opportunities to develop new specialties, they can instead look back at periods of much-increased creativity and think that they’re a bad developer who spends most of their time being unproductive. In reality, they are normally-productive for much of their time, and super-productive when the thing which needs doing is an excellent match for their experience and knowledge.

4. I don’t quite know how this one crops up, but many developers think having a high reliance on tools is bad. I have encountered developers who refuse to use automated deployment systems (“I want to understand what’s going on, and I can’t do that if it’s automated”), refactoring tools (“it’s safer to make each change manually”), and even syntax-highlighting and code completion (“I know my language and my libraries. What if one day I’m stuck using vi on a green-screen linux box from the 70s? Where will I be then if I’m used to these fancy tools?”). I call this concrete-pill syndrome, and I suspect it has something to do with wanting to look capable of handling everything yourself. In reality, these tools (and many others) are great levers, allowing developers to increase productivity and quality.

5. “As a developer, it doesn’t matter if I have poor people-skills, because in developer roles I can ignore office politics anyway.” This is a recurring one, and it doesn’t just hurt your long-term career – it hurts your current project, it affects the sorts of projects you get to work on, and it hurts your team. I try to shield my team from the need to play politics, but I also try to let them see just how much of it I have to do. Not playing office politics well enough can leave you stuck with a bad manager (see some of the earlier myths about the contribution a good manager can make), or it can leave you stuck with a really bad external technical decision. It can leave you stuck with a really bad hire.

Earlier in my career, someone from upper management asked me: “Of the candidates for the developer role you rejected, who was the least bad?” I made the mistake of telling him, and I got stuck with that bad candidate on my team right through his probation period. I should have known to respond with “They were all unsuitable, let’s line up some more interviews”.

6. Developers early in their career sometimes think they are much better than experienced developers. I’ve heard it called ‘God’s Gift to Coding’ syndrome. It happens because they believe they are better with new technology, and new technology is more productive, and so they are worth more than someone who is too out-dated in their thinking or is stuck on old platforms and techniques. While some older developers do remain focused on older systems, they have still built up a depth and breadth of experience which is valuable. However, many developers continue to be intrigued by new technology as they get older, and keep their skills as (or more) current than many juniors.

7. This is a two’fer: “Domain experts outside software aren’t really that smart” and “domain experts have magical knowledge of an esoteric field I can never begin to understand”. The reality is that the domain experts you work with – whether they are accountants, scientists, engineers, or sales people – have years of learning, training, and industry experience which is highly valuable to your team. As a developer, you need to respect that – but you also need to be a sponge, learning what you can about the domain. If you don’t understand what you’re building, you will fail to consider important things. If you don’t rely on your experts for their professional knowledge, though, your project will be built by amateurs who happen to be good at software.

(I originally published this list on Quora but wanted to get it on my own blog as well.)

Consulting and Motivation

Caveat: I’m very hesitant to post this publicly. Please read it in the sense I’ve written it. I’m being vulnerable in the hope of opening up discussion on a topic which I can’t see people talking about, but which I think is probably important.

I’ve spent most of my software career as part of a product team. Whether I’ve been writing code (mostly), managing people (when needful, and more often lately), mentoring, or doing any of the many little side-roles which are needed to build a successful product, I’ve always been able to rely on the fact that everyone I’m working with has the same big-picture mission.

I’m not talking about “producing great software” here. I’m talking about the alignment between business, and product, and people – over the years it has ranged from “let people put a $2 coin into a kiosk and use the internet” to “produce weather forecasts to help mines make better decisions” to “provide better patient outcomes in hospitals”. That shared mission has always been fundamental to my own sense of purpose and motivation. It’s what makes me feel worthwhile as a person, and it helps me justify to myself the salary I get paid – I would hate to feel like I’m being paid money but not adding value!

A bit less than a year ago, I moved from product teams to consulting – and the rug has been pulled out from under my feet.

It probably doesn’t help that I’ve moved straight into a leadership role. I don’t have one client for weeks or months at a time – I have somewhere around 20 clients simultaneously, as well as leading a team of consultants and being part of the overall leadership of my state and my national group. My usual source of motivation – that shared mission – hasn’t just been diluted. It’s been shredded, processed, ground up, kneaded into dough, cooked, and handed back to me in a form I just don’t recognise.

I needed to find a new source of motivation.

I went looking online, and there’s not a lot out there. I read listicles about how to stay motivated as a consultant – “Exercise!” “Don’t sweat the small stuff!” “Take time to recharge!” “Just believe in yourself!”. I read (or mostly listened to) books about consulting, and they gave me all sorts of strategies – for being a better consultant. I just haven’t been able to find much (anything?) addressing my motivational problem.

I’ve had a string of successes, mostly great outcomes, and one or two things which haven’t gone well. I’ve watched the various strategies we’ve used to motivate people with lots of interest – hoping I’d find something to get my gears engaged. Positive call-outs, monetary rewards, team-building exercises. They’re good strategies. They make me feel good in the moment. It’s a great team – some of the smartest people I’ve ever worked with. That can be hard to deal with in itself, but I’ve mostly moved on from my imposter syndrome to something a little more complicated, so that’s OK.

None of these things has been a solid substitute for the fundamental sense of purpose I used to get from being part of a team with a mission. A mission beyond just “build great software” – that’s just a means to an end. A mission like “create better hospital outcomes for patients”. That was a good one.

I have clients with missions now. Some of them even believe in their own missions, and occasionally they’re missions I care about too. But I only get to care about my clients’ missions sometimes – and other times my mission is aligned with my own team (whose mission is somewhere between “build great software” and “keep the client happy”), and sometimes I’m worried about the broader group or consultancy. Sometimes I’m aligned with the sales team, and sometimes I’m opposed to them. Sometimes I’m focused on a client whose mission I disagree with. Success, then, means making the world a worse place (from my point of view).

The best advice I’ve found so far has been this: find a sense of pride in the quality of your work, and the reputation of your team. Good advice, I’m sure, and probably very fulfilling for some.

I haven’t had any luck decoupling the quality of my work from the outcomes and the team and the mission. Quality work is just another means to an end: accomplishing the mission.

I normally write blog posts because I feel like I’ve got some knowledge to share, but the more leadership I do, the more that I understand it’s not always about dishing out nuggets of wisdom from on high – it’s about facilitating discussions, and helping create understanding from our shared experiences. So here I am, ending a blog post with the same uncertainty that I started it with.

Please, reply here, or reply to this tweet. Whether you’re a consultant now, or you have been one in the past and struggled with the same thing, or you’re on a product team and get your motivation from another source. Whether you have an answer, or a different perspective, or just more questions – let’s talk about this topic. One of the biggest industries in my city is consulting, and I feel like this is a big topic which just isn’t talked about. Let’s start talking.

How my C# Object.Extend implementation works

I’ve had a few people ask me to explain how my C# Object.Extend implementation works – so here I am, going into more detail than I expected people would be interested in.

Making Object.Extend work seemed straight-forward at first. You can read my initial code in my original ObjectExtend post. The problem started when I tried to chain two calls together: I immediately got a RuntimeBinderException. Unfortunately, for a really good reason (the difficulty of discovering the right namespaces to search), the code responsible for runtime method binding doesn’t look for extension methods. That means that when the first call to .Extend returns something marked as dynamic (regardless of what actual type it returns), you can’t use any extension methods on the result. Attempting to call either .Extend again or .Dump (another common extension method in LINQPad) results in the dreaded RuntimeBinderException.

The usual usage of the dynamic keyword is to let us return something like the ExpandoObject type, like this:

dynamic ReturnSomething() {
	return new ExpandoObject();
}

Fortunately, the dynamic keyword in C# essentially just tells the compiler to engage duck-typing mode – it doesn’t actually tell the run-time anything. So there’s nothing stopping us from doing this:

dynamic ReturnSomething() {
	return new List<string>();
}

The compiler (and your IDE) will allow you to try to call anything at all on the return value of ReturnSomething, and hand everything off to the runtime binder. This means that you can’t use extension methods on anything returned by a method marked dynamic, even if you actually return a regular non-dynamic type.

dynamic ReturnSomething() {
	return new object();
}
ReturnSomething().Dump();

Nope. Instant RuntimeBinderException.

There’s one situation which will give us exactly what we want – if we mark the .Extend function as dynamic, but the type we return has our Extend method built right in to it. This means our IDE (LINQPad, in my case) will allow us to access any of the dynamic properties we build up on our types over successive calls to Extend, and the runtime binder will be able to find the methods because they’re right on the type we return – we’re not relying on extension methods!

I initially thought I could create a subclass of ExpandoObject with calls for Extend and Dump, but it turns out that not only is ExpandoObject a sealed class, it’s also a bit special in other ways – so that was a no-go.

So now the only problem we have is that we need to create types on the fly which contain functions for Extend (and Dump, for convenience), and also whatever properties we want to dynamically add – the union of all of the properties on the original object and the objects we want to extend it with. I looked into a few alternatives, and a good compromise was the Microsoft.CSharp.CSharpCodeProvider – it allows me to dynamically assemble a syntax tree and get the framework to generate in-memory assemblies on-the-fly. The details are a little tedious, but it’s very possible to use this to create types on the fly – containing both the method calls we want for Dump and Extend as well as all of the properties we need. We can then instantiate our dynamically-created type and copy all of the values onto it. Our IDE will let us access our runtime-created properties and methods without compile-time errors, because our function is marked as dynamic – and the runtime binder can find all of the properties, as well as our .Extend and .Dump methods, because they’re actually on the type the runtime binder is looking at.

The minimum viable code to do something useful with CSharpCodeProvider looks something like this (note that this requires a couple of helpers you can find in the class linked below):

var compileUnit = new CodeCompileUnit();
var nameSpace = new CodeNamespace("MyDynamicNamespace");
var classType = new CodeTypeDeclaration("MyNewType");
classType.Attributes = MemberAttributes.Public;
compileUnit.Namespaces.Add(nameSpace);
nameSpace.Types.Add(classType);
var returnThree = new CodeMemberMethod { 
	Name = "ReturnThree", 
	Attributes = MemberAttributes.Public,
	ReturnType = new CodeTypeReference(typeof(int))
};
returnThree.Statements.Add(new CodeMethodReturnStatement(new CodePrimitiveExpression(3)));
classType.Members.Add(returnThree);
var result = _cSharpCodeProvider.Value.CompileAssemblyFromDom(_compilerParameters.Value, compileUnit);
var compiledType = result.CompiledAssembly.GetTypes().Single();
LINQPad.Extensions.Dump(((dynamic)Activator.CreateInstance(compiledType)).ReturnThree());

This is a very round-about way to output the number 3, but it works!
PrintThree

I won’t reproduce the code here, but you can find all the details of the Object.Extend dynamic type creation in the CreateTypeUncached function in ObjectExtend.cs.

You might notice the word ‘Uncached’ there. When I first tried this approach, it was horrifyingly slow – I was using Object.Extend in a Select statement against a large IEnumerable, and generating many identical types. Throwing a quick cache into the mix based on the name and type of all properties of the type we need vastly reduces the number of calls to the compiler service and brings performance up to a tolerable level.

While I have glossed over some details, hopefully this explanation will give readers some background information to aid in reading the code. Please feel free to reach out to me on Twitter and let me know if parts of my explanation are hard to follow.

Object.Extend in C# for exploratory coding

LINQPad is great for exploratory coding. I use it all the time while I’m poking at APIs, and it’s completely replaced other scripting languages for me. I often find myself gradually building up result sets as I grope my way towards the result I’m looking for – and then I go back and re-factor it into something more presentable.

Unfortunately, building up these result sets can mean copying all the members of an old dynamic object into a new dynamic object.

var sites = siteData.Select(s => new { SiteName = s[0], SiteLink = s[1] });
var siteInfo = sites.Select(s => new {
    SiteName = s.SiteName, SiteLink = s.SiteLink, SiteInfo = SiteInformation[s.SiteName]
});
var siteContent = siteInfo.Select(s => {
    var details = GenerateDetailsSomehow(s);
    return new {
        SiteName = s.SiteName,
        SiteInfo = s.SiteInfo,
        SiteLink = s.SiteLink,
        SiteDetails = details
    }
});
// ... more of the same

That gets tedious fast. Wouldn’t it be great if C# had something similar to JavaScript’s Object.Extend? Well, maybe it can. I jumped into the “My Extensions” file in LINQPad and put together the following extension method:

public static dynamic Extend(this object firstObj, params object[] objs) {
    var result = new ExpandoObject();
    foreach (var o in new[] { firstObj }.Union(objs)) {
        foreach (var p in o.GetType().GetProperties().Select(p => new { Name = p.Name, Value = p.GetValue(o) })) {
            var props = ((IDictionary<string, object>)result);
            if (props.ContainsKey(p.Name)) props[p.Name] = p.Value;
            else props.Add(p.Name, p.Value);
        }
    }
    return result;
}

Now you can just call .Extend(...) on any object! So instead of having to create new objects all the time, you can do this:

var sites = siteData.Select(s => new { SiteName = s[0], SiteLink = s[1] });
var siteInfo = sites.Select(s => s.Extend(new {SiteInfo = SiteInformation[s.SiteName]}));
var siteContent = siteInfo.Select(s =>s.Extend(new { SiteDetails = GenerateDetailsSomehow(s) }));

That’s much easier to read (and quicker to write) than the first snippet! Unfortunately, it doesn’t work – the first call to our object.Extend(...) extension method is just fine, but the second call fails. Sadly, the way the runtime binder works means that our extension method won’t be available on the dynamics we create, so we can’t chain multiple calls using this approach.
RuntimeBinderException

I have solved that (and a number of other minor annoyances) and put it all together in a Nuget package called ObjectExtend. Sadly, if you don’t have a license for LINQPad you may have to download the package and reference it manually, but if you do have a license you can use the Nuget client built right in to LINQPad.

After adding ObjectExtend to our script, the chained script above works as expected:
ObjectExtendScreenshot

There you have it! Object.Extend in C#.

Please note this is a package focused on tinkering in LINQPad. It’s not the kind of thing you should be using while building maintainable, production-quality software.

Update: I had a few requests for source code, and it’s up on github now, but rather than making people who want to understand it dig through code I wrote up an explanation.

Measure (At Least) Twice

20180218_143538 - SmallBear with me here. I promise this is about software – but first I need to talk about building.

I have several uncles and uncles-in-law who are builders, and when I was younger I ended up helping out with minor jobs here and there. One of the most recurrent mantras was this one:

“Measure Twice, Cut Once.”

The idea, if it’s not immediately obvious, is that you double-check your measurements before committing to an action which is costly or hard to undo. Once you’ve cut that beam or board, you can’t un-cut it – the board will stay cut despite your best efforts to turn back time. If you cut it too small, you can no longer use it for what you planned to. If you cut it too big, you have to try again. Measuring is cheap – cutting is expensive. Measure twice, cut once.

I consistently see software engineers fail to even measure once.

I once reviewed a pull request from a developer who had decided to optimise part of our code base which performed intensive weather modelling. He had spent a week on it – and he had spent that time re-writing a large number of string plus operations to use StringBuilders. In some cases this can provide some performance benefit – but the re-written code was in the setup and teardown phases of the modelling. Setup and teardown took only seconds, while the modelling itself could take minutes or hours. Worse, this developer had introduced several bugs into previously-working code; but that would make this an anecdote for a blog post about the importance of testing and safe refactoring, and this is about measuring, so let’s focus on a different “worse”. Not only had he optimised the wrong part of the code base, but because he hadn’t measured performance, he couldn’t demonstrate that he’d actually made anything faster (aside from some vague assertions that StringBuilder is faster than string-plus, which isn’t always true).

I didn’t even need to measure to know that his change wasn’t going to make things significantly faster – the code wasn’t in a loop, and I knew that the overall modelling time was long. Shaving off microseconds at a time in a scenario like that is a losing game. The other reason I knew for certain that his change wasn’t going to pay dividends was that I had already spent quite some time improving the efficiency of that setup process. We had benchmark tests around parts of that code, and we had made significant wins. Most of them were had by fixing the .GetHashCode and .Equals methods of a custom coordinate class we were using. We were wrangling a fairly large amount of data into data structures needed by the modelling code, and set operations like .Contains were taking far too long. It turns out both .GetHashCode and .Equals were creating additional instances of the class to perform certain comparisons, and so we were churning the garbage collector as well as performing far too many operations. Some careful tweaks to those methods – operations performed many times within nested loops – took our setup time down from minutes to seconds. We knew that we’d made things better because we were measuring – but the benefits of measurement go much deeper than just knowing how you did.

All developers fall somewhere on the spectrum between, roughly, terrible and genius. I’m not sure where on that spectrum I fall (I suspect it varies depending on what sort of programming I’m doing), but I am pretty sure that I wasn’t good enough to read through thousands of lines of C# across many different files and realise, through pure mental analysis, that we had a performance problem in our coordinate comparison code. Even if I had noticed that it wasn’t efficient, I wouldn’t have been sure how much the problem was contributing to our run time (as compared to, say, our inefficient string concatenation). Instead, I found out by measuring.

In this case, I used one of the simplest of all code profiling techniques: the pause button in my debugger. Simply run your code, and sometime during the long-running process, hit pause. The line you’ve broken on is extremely likely to be part of the problem. Typically, it will fall into one of two categories:
1. A line which is executing many times. In this situation, something further up the stack trace is calling the code you’re looking at inside a large (or nested) loop.
2. A line which is taking a long time to execute. Perhaps it’s hitting disk or network and waiting a long time before continuing.
There is a third (statisically less-likely) option: you’ve just happened to break execution somewhere that isn’t part of the performance problem. That’s why you measure (at least) twice. Break your long-running operation a few times, and compare the stack traces. If your stack dump consistently looks the same, you’ve found your performance hot-spot.

That’s one of the simplest ways of measuring your code, and it may suffice for tracking down hot-spots, but there is a lot more to measurement than just hitting pause in your debugger. Do you suspect you have a database problem? Don’t go hunting through code looking for your favourite anti-patterns. Instead, measure the number of database round-trips your operation makes. Use your database tools to identify expensive queries – and even once you’ve found them, don’t necessarily just start staring at code. Are you missing an index? There are tools which can tell you. Even if the query is bad, looking at the query plan will tell you exactly which parts of the query are causing the problem, so you don’t need to guess.

Maybe you are hitting multiple services and combining the results? If you’ve just learned about the async keyword, you might be tempted to dive in and start making everything async – but if almost all of the delay is coming from a single call, it might not help much (you’d be better trying to find out why that service is so slow). If you really are dealing with multiple similar-cost calls which you combine after they’re all complete, async may be a good investment of your time – but you won’t know until you’ve measured.

For one weather-forecasting algorithm I measured, I didn’t turn up anything obvious. I measured and measured some more, and eventually I discovered we were utilising the CPU cache poorly – the bulk of our algorithm time was spent fetching data from main memory after cache misses. Updating the algorithm was a very costly measure, but investing in hardware with better memory bandwidth gave us some short-term wins. There are very few developers who can look at an algorithm and spot a cache utilisation problem, but measurement can find it for you.

I think I understand why some developers prefer to dive right into code, instead of measuring the problem. We like to think we’re smart. We know stuff about coding, and we’re good at it, and so we can jump in and spot what the original developer didn’t. We can use the sheer power of our minds to solve the problem. It’s a little like the builder who drives in nails with his forehead. It might be impressive, but it’s not very effective, and you’ll end up with a headache.

The opposite problem happens too: we make the mistake of not valuing our time. “What can it hurt to spend a week re-writing those string-plus operations as StringBuilder operations,” we ask ourselves. It makes our code better (by one measure, I suppose), and it won’t hurt performance. But if we spend a week of our time, was it really worth the investment? Measure up front, so you can make that decision based on facts instead of guesses.

Perhaps some developers just feel like they have great intuition. One of my uncles was actually pretty good at estimation: he’d cut timber a shade too big, and trim it down as he was placing it. He only did that occasionally, though. A lifetime of building told him when it made sense to trust his estimation skills, and when to measure twice, cut once.

So we’re back to builders, and here’s the deep lesson. If a builder will measure twice to avoid wasting a bit of cheap wood, how much more should we measure to avoid wasting precious time? I’ve seen weeks wasted on the wrong problem, simply because someone didn’t bother to measure.

Please, my fellow developers: measure (at least) twice.

Hooking (Hacking?) the ASP.Net FileChangeNotifier

I’m going to tell you a little bit about a package I’ve just put together which lets you exclude certain files from the ASP.Net change notifier (the thing which restarts your IIS app pool whenever you change certain files). On the way, we’re going to dig into some internal framework code, and I’m going to horrify you with some code that should definitely never get run in production! Let’s start with the inspiration for this work.

A Bad Dev Experience

The dev experience on one of our legacy projects had been annoying me for a while: whenever I triggered a Gulp build, my IIS app pool would restart. That sometimes had (annoying) flow-on effects, and we ended up with various work-arounds depending on what we were doing. It was never a priority to fix, because Gulp builds only happened on dev and CI machines, never in deployed environments – but one week it really got in the way of some work I was doing, so I decided to get to the bottom of the problem.

You may know that ASP.Net will restart your application whenever there are changes to your web.config or any files in your /bin folder. What you might not know (I didn’t) is that it can also monitor various other files and folders in your application, and what it monitors doesn’t seem to be well-documented. Our Gulp build dumps the output into a /dist folder, and ASP.Net was restarting our app every time any file in that folder changed. After a little Googling, I discovered a StackOverflow answer which gave a slightly-hacky way to disable the ASP.Net file monitoring, which I did – and it worked. No more app restarts!

Not So Fast…

After a few hours of front-end work, I needed to make some back-end changes. I finished wiring up my API endpoints, ran the project, and expected success! No luck. After some more tinkering with the front-end, I suspected my C# code – but after some checking, it was definitely correct: I had the unit tests to prove it. Eventually I fired up the debugger, and found my problem: the debugger was reporting that the running code didn’t match my file. Disabling file change notifications had also disabled notifications on the /bin folder, so my rebuilt DLL files weren’t being loaded. I wasn’t prepared to accept rebuilds not triggering reloads, so I needed to revisit my solution.

Before I went too far, I wanted to be really sure that I was looking at the right problem. It turns out someone going by the name Shazwazza has already done the hard work to build a list of files and folders ASP.Net is helpfully monitoring for changes, and yes – there is my Gulp output folder.
FileChangeNotifierFileList

What I really want is to be able to preserve all of the existing functionality – but skip monitoring for certain paths. I investigated a few different switches and options, but none of them gave me exactly what I wanted. I was going to have to get my hands dirty.

Diving Into Framework Code

Having read Shazwazza’s code, I had already learned that the file monitor is stored on the HttpRuntime singleton, so I started my investigation there. I was hoping it just stored a reference to an interface, so I could just replace it with my own wrapper over the base implementation.
FileChangeNotifierReference

Well, no interface – but I suppose I can just subclass FileChangesMonitor and use reflection to swap the base implementation out for my own.
FileChangeNotifierSealed
Oh. It’s a sealed class – so I can’t even subclass it. It was about this point that I stopped trying to solve the problem on work time: this had become a personal mission, and I wasn’t going to give up until I’d made this thing behave the way I wanted to.

First, I needed to get a solid understanding of how the FileChangesMonitor class worked. After a lot of reading, it boils down to this: other classes ask the FileChangesMonitor to monitor a particular path, and it maintains a hash of paths to DirectoryMonitor instances which it creates. In turn, DirectoryMonitor has a hash of filenames to FileMonitor objects it has created, and FileMonitor has a HybridDictionary which stores callbacks. FileChangesMonitor, DirectoryMonitor, and FileMonitor are all sealed classes, so it looks like I’m out of luck – but I refused to be beaten!

The core classes I’m dealing with are all sealed, so there’s definitely no option to change behaviour there – but at each step of the object hierarchy, a parent object is storing instances of these sealed classes in plain old collection types: Hashtables and HybridDictionaries. Those classes aren’t sealed, so that’s going to have to be the seam where I stick my metaphorical crowbar.

A Word of Warning

If the idea of messing with private-member Hashtables makes you nervous, good. I’m about to go messing with the internals of framework classes in a very unsupported, highly-fragile way. This is not production-quality code. This is nasty, hacky code which is probably going to break in the future. If you ever use this code, or this extension technique, please do it in a way which will never, ever, ever run on a production machine.

I’m trying to fix the dev experience here, and so I decided to accept the hacky nature – but I have put plenty of guards around it to keep it clear of our production machines. I’ve even made sure it stays clear of our test environments. It’s a local-dev-environment only thing!

A Note on Reflection

If you’re familiar with the .Net reflection API, you’ll know it can be a little clunky. I’m using the following extension methods to make my code look a little cleaner.

public static class ReflectionHelpers
{
  public static FieldInfo Field(this Type type, string name) => type.GetField(name, BindingFlags.NonPublic | BindingFlags.Instance);
  public static FieldInfo Field<T>(string name) => typeof(T).GetField(name, BindingFlags.NonPublic | BindingFlags.Instance);
  public static FieldInfo StaticField<T>(string name) => typeof(T).GetField(name, BindingFlags.NonPublic | BindingFlags.Static);

  public static ConstructorInfo Constructor(this Type type, params Type[] parameters)
    => type.GetConstructor(BindingFlags.NonPublic | BindingFlags.Instance, null, parameters, null);

  public static MethodInfo StaticMethod(this Type type, string name, params Type[] parameters)
    => type.GetMethod(name, BindingFlags.Static | BindingFlags.NonPublic, null, parameters, null);

  public static Type WebType(string name) => typeof(HttpRuntime).Assembly.GetType(name);
  public static Object Make(this ConstructorInfo constructor, params Object[] parameters) => constructor.Invoke(parameters);
  public static Object Call(this MethodInfo method, params Object[] parameters) => method.Invoke(null, parameters);
}

How I Hooked (Hacked) FileChangesMonitor

What I really want to do is to prevent FileMonitor from setting up file watches for specific paths, and my only extension point is the HybridDictionary of watches. When FileMonitor is asked to set up a watch, it checks its dictionary to see if there’s already one there for that specific callback. If it doesn’t already have one, it sets one up. So what I need is a HybridDictionary which always has an entry for any given callback!

Sadly, HybridDictionary doesn’t declare its methods as virtual, so we can’t just go overriding them. Fortunately, it does just use a Hashtable under the covers – and we can use some reflection trickery in the constructor to replace the Hashtable it creates with one of our own design!

/// <summary>
/// Intercepting hybrid dictionary. It always responds to any key request with an actual value
///  - if it didn't exist, it creates it using a FileMonitor factory.
/// HybridDictionary always uses a hashtable if one has been constructed, so we just rely on InterceptingHashTable.
/// This relies on an implementation detail of HybridDictionary but we're way past worrying about that kind of thing at this stage.
/// </summary>
public class MonitorInterceptingHybridDictionary : HybridDictionary
{
  static Type EventHandlerType = WebType("System.Web.FileChangeEventHandler");
  static ConstructorInfo FileMonitorConstructor = WebType("System.Web.FileMonitorTarget").Constructor(EventHandlerType, typeof(string));
  public MonitorInterceptingHybridDictionary()
  {
    var fakeTable = new InterceptingHashTable(o =>
      {
        try
        {
          return FileMonitorConstructor.Make(null, "test");
        }
        catch (Exception ex)
        {
          Log.Error(ex, "Unable to create a file monitor target pointing at {Target}", o);
          return null;
        }
      });
    Field<HybridDictionary>("hashtable").SetValue(this, fakeTable);
  }
}

Our new HybridDictionary is using another new class I’m going to re-use shortly – the InterceptingHashTable. Here, we finally catch a break: Hashtable declares a lot of its methods as virtual, so we can override functionality. What we’re going to do here is to create a new subtype of Hashtable which always has the key you’re looking for, even if it hasn’t been added. We pass a factory function in to the constructor, so whenever something asks for the value for a given key, we can construct it on the fly if it hasn’t already been added.

/// <summary>
/// Intercepting hash table. It always responds to any key request with an actual value
///  - if it didn't exist, it creates it with the provided factory.
/// This currently only implements this[key] because that's all the file monitor stuff uses.
/// To be generally useful it should override more methods.
/// </summary>
public class InterceptingHashTable : Hashtable
{
  private readonly Func<object, object> _factory;
  public InterceptingHashTable(Func<object, object> factory)
  {
    _factory = factory;
  }
  public override Object this[Object key]
  {
    get
    {
      var maybe = base[key];
      if (maybe == null)
        maybe = CreateMonitor(key);
      return maybe;
    }
  }

  public Object CreateMonitor(Object key)
  {
    return _factory(key);
  }
}

If you take a look back at the MonitorInterceptingHybridDictionary code above, you’ll see that it’s going to pretend it’s already got a FileMonitorTarget anytime something looks – and that means the calling FileMonitor will think it’s already got a watch on the file, and skip creating it. Bingo! The next step is to replace the HybridDictionary on FileMonitor with an instance of our new class.
FileMonitorTargets

Of course, it’s a private member, and we’ve currently got no way to hook the creation of FileMonitor instances. What does create FileMonitor instances? The DirectoryMonitor class – and fortunately for us, it keeps a Hashtable of all of the FileMonitors it’s created. That means we can swap out the Hashtable for another of our InterceptingHashTables, and every time the DirectoryMonitor looks to see if it already has a matching FileMonitor, we create it if it doesn’t already exist.

// Create a dodgy hashtable which never has a blank entry - it always responds with a value, and uses the factory to build hacked FileMonitors.
var fakeFiles = new InterceptingHashTable(f =>
  {
    try
    {
      // Build a FileMonitor.
      var path = Path.Combine(o as string, f as string);
      var ffdParams = new object[] {path, null};
      ffd.Invoke(null, ffdParams);
      var ffdData = ffdParams[1];
      object mon;
      if (ffdData != null)
      {
        var fLong = ffdData.GetType().Field("_fileNameLong").GetValue(ffdData);
        var fShort = ffdData.GetType().Field("_fileNameShort").GetValue(ffdData);
        var fad = ffdData.GetType().Field("_fileAttributesData").GetValue(ffdData);
        var dacl = secMethod.Call(path);
        mon = fileMonConstructor.Make(dirMon, fLong, fShort, true, fad, dacl);
      }
      else
      {
        // The file doesn't exist. This preserves the behaviour of the framework code.
        mon = fileMonConstructor.Make(dirMon, f as string, null, false, null, null);
      }
      // Break the FileMonitor by replacing its HybridDictionary with one which pretends it always has a value for any key.
      // When the FileMonitor sees it already has this key, it doesn't bother setting up a new file watch - bingo!
      var fakeHybridDictionary = new MonitorInterceptingHybridDictionary();
      mon.GetType().Field("_targets").SetValue(mon, fakeHybridDictionary);
      // Take this warning away later
      Log.Debug("Provided fake monitoring target for {Filepath}", path);
      return mon;
    }
    catch (Exception ex)
    {
      Log.Error(ex, "Unable to create a file monitor for {Filepath}", f as string);
      return null;
    }
  });

Now, we’re faced with another problem: we have no control over the creation of DirectoryMonitor instances, but we need to replace the private Hashtable it keeps with the fake one we’ve just made.
DirectoryMonitorFilemons

Luckily for us, the FileChangesMonitor class keeps a Hashtable of DirectoryMonitors!
FileChangesMonitorDirs

You might be able to guess where this is going: we need another fake Hashtable which always creates DirectoryMonitor objects on the fly. Stay with me here, we’re approaching the end of this thread we’ve been pulling on.

// This is a factory which produces hacked DirectoryMonitors. DirectoryMonitor is also sealed, so we can't just subclass that, either.
Func<object, object> factory = o => {
  try
  {
    if (!(o as string).Contains(@"\EDS\dist"))
    {
      Log.Debug("Allowing file change monitoring for {Filepath}", o as string);
      return null;
    }
    var dirMon = dirMonCon.Make(o as string, false, (uint) (0x1 | 0x2 | 0x40 | 0x8 | 0x10 | 0x100), fcnMode);
    // Create a dodgy hashtable which never has a blank entry - it always responds with a value,
    // and uses the factory to build hacked FileMonitors.
    // ... the previous code block goes here ...
    // Swap out the hashtable of file monitors with the one which lets us always create them ourselves.
    dirMon.GetType().Field("_fileMons").SetValue(dirMon, fakeFiles);
    return dirMon;
  }
  catch (Exception ex)
  {
    Log.Error(ex, "Unable to create a directory monitor for {Filepath}", o);
    return null;
  }
};

Finally, the HttpRuntime class holds a reference to a single copy of FileChangesMonitor, and HttpRuntime itself is a singleton!
HttpRuntimeFcm

HttpRuntimeSingleton

With a little more reflection, we can therefore swap out the Hashtable in FileChangesMonitor with our hacked Hashtable of DirectoryMonitors, and now we have control of all the instantiation of DirectoryMonitors and FileMonitors, and we can intercept any filenames we don’t want tracked and provide dummy FileMonitorTarget responses to prevent the watches from being set up.

/*
* I am so, so sorry if you ever have to maintain this.
* ASP.Net monitors a pile of folders for changes, and restarts the app pool when anything changes.
* Gulp often triggers this - restarting the app pool unnecessarily, annoying developers. Annoyed developers write code like this.
*/
var httpRuntime = StaticField<HttpRuntime>("_theRuntime").GetValue(null); // Dig out the singleton
// Grab the FileChangesMonitor. It's a sealed class, so we can't just replace it with our own subclass.
var fcm = Field<HttpRuntime>("_fcm").GetValue(httpRuntime);

// Grab a bunch of internal types, methods, and constructors which we're not meant to have access to.
var dirMonType = fcm.GetType().Field("_dirMonSubdirs").FieldType;
var dirMonCon = dirMonType.Constructor(typeof(string), typeof(bool), typeof(uint), typeof(int));
var fileMonType = dirMonType.Field("_anyFileMon").FieldType;
var fadType = fileMonType.Field("_fad").FieldType;
var fileMonConstructor = fileMonType.Constructor(dirMonType, typeof(string), typeof(string), typeof(bool), fadType, typeof(byte[]));
var ffdType = WebType("System.Web.Util.FindFileData");
var ffd = ffdType.StaticMethod("FindFile", typeof(string), ffdType.MakeByRefType());
var secMethod = WebType("System.Web.FileSecurity").StaticMethod("GetDacl", typeof(string));

// ... insert all the above code to create the factory ...

// Swap out the hashtable of directory monitors with the one which lets us always create them ourselves.
var table = new InterceptingHashTable(factory);
fcm.GetType().Field("_dirs").SetValue(fcm, table);

So what’s the up-shot of all of this? Well, firstly, I’ve written some of the nastiest, hackiest code of my career. Secondly, I’ve wrapped it all up into a nuget package so you can easily run this nasty, hacky code (it’s not up quite yet – I’ll share another post when it’s ready to go). And thirdly, I need to warn you again: Do not put this near production! I don’t care how you accomplish it, but please put plenty of gates around the entry point to make sure you don’t trigger this thing in a deployed environment. It really is a dev-only device.

Surely There’s a Better Way?

There is absolutely a better way. I encourage you to find other ways to avoid dev changes constantly churning your app pool. I strongly suspect our problem was serving our Gulp build output via a secondary bundling step: the Asp.Net bundler seems to be one of the things which might register files with the FileChangesMonitor. For various reasons (mostly, that the project was a big, complex, legacy project which is hard to test thoroughly), I strongly preferred dev-only changes to making production-affecting changes. And so here we are.

If you can find a way to avoid using this technique, I strongly recommend you do.

What I talk about when I talk about DevOps

What does ‘DevOps’ mean, anyway?

devops-photo-mWe’re a DevOps consultancy, and we’re hiring DevOps engineers. But the software industry has a crisis right now – and that crisis is all about the word ‘DevOps’ and what it really means. I’m starting to wonder whether putting ‘DevOps’ in our job ads might actually be counter-productive – and at YOW! this week, I finally understood why.

Elabor8 (where I work) had a booth at YOW!, and I gave a couple of lightning talks there. Probably the biggest crowd-pleaser was my talk on resiliency patterns in distributed systems. I covered some difficult topics like the importance of having idempotent rollback steps in compensating transactions and how lessons learned from the ship-building industry help us craft better distributed systems, all presented in 10 minutes in a crowded event space.

Hang on, you may well ask. If I’m a DevOps consultant, why am I talking about atomicity and consistency in distributed systems? Shouldn’t I be talking about cool PowerShell tips and how to set up Jenkins?

As is so common with rhetorical questions, the answer is a resolute ‘No’.

When I talk about DevOps, I talk about Software Engineering.

When I do DevOps work, I’m doing software engineering. When I hire for DevOps roles, I hire software engineers. But I don’t hire just any software engineers: I want the ones who care about the delivery process. They know how to build software, and also how to put it in front of the user – and how to keep on putting that software in front of users, sprint after sprint, story after story, rapidly, efficiently, and without breaking things.

‘DevOps Engineer’ is the next ‘Full-Stack Developer’ – and not because it’s the next hype-cycle in tech hiring. In the same way full-stack developers expanded their scope to cover both the UI and the back-end, DevOps engineers have expanded their scope beyond writing software – and into the realm of how we get that software in front of users, in the fastest and most reliable way possible.

No longer are we content to just build back-end systems and UI layers on top of them: as a profession, we’re coming to understand that software engineering is bigger than just churning out vertically-sliced user stories. Software engineering is about building the right thing and keeping it running – and a DevOps engineer is a software engineer who cares about both steps. You don’t want a team full of DevOps engineers – but you definitely need at least one.

When I talk about DevOps, I talk about Agile.

You start to see the real benefits of automation when you’re deploying to production regularly. For example, if you’re only shipping a few times a year, the overhead doesn’t hurt you that much. If you have a 6-week QA pipeline and a 2-month UAT window, you don’t need DevOps (yet). Once you start trying to deploy regularly – getting your cycle time down, keeping your WIP low, delivering value to the user faster and more frequently – that’s when the overhead starts to hurt.

Once you introduce agility to your process, that’s when you need to pay attention to the DevOps movement. That’s when you need some software engineers who care about automation. Please note though that I’m not saying you need “some DevOps” – there’s no such thing as “some DevOps”, and anyone who tries to sell you “some DevOps” is doing you no more favours than someone who tries to sell you “some Agile”. What you need is some smart software engineers who care about DevOps – and you need to give them the time and resources they need to do their job.

When I talk about DevOps, I talk about teams.

DevOps engineers are software engineers, but that doesn’t mean you should fill your software teams up with DevOps engineers. DevOps engineers tend to be passionate about a bunch of really interesting stuff: resilience patterns, testing, automation, source control, and release management. The great thing about multi-disciplinary, cross-functional teams, however, is that you get a bunch of people with different passions together, and that breadth gives you the ability to do great things. Don’t try to hire DevOps engineers (or worse, to build a DevOps team). Hire software engineers, and when you find ones who are great at DevOps, keep them.

Having cross-functional teams also gives your team members the chance to cross-skill while they work with other team members, which is why…

When I talk about DevOps, I talk about teaching.

Great DevOps engineers have a genuine enthusiasm for quality software engineering and release management, and their enthusiasm is infectious. Great DevOps engineers don’t hoard their knowledge, but help their fellow software engineers to learn more about the DevOps mindset by sharing what they know. They also learn from their colleagues who specialise in other software engineering fields, becoming more well-rounded themselves as they help others do the same.

Finally: When I talk about DevOps, I talk about people.

DevOps is a branch of software engineering – and whatever you might hear, software engineering is all about people. It’s about the people who use our software, and the people who build it. DevOps is the intersection of those two groups: users and developers. Our users are not just end-users, who enjoy higher-quality software, but also our fellow engineers, who rely on our automation to work more efficiently. They’re our managers, who rely on the insights we give them into the release process. Our users are the junior software engineers who may one day specialise in DevOps engineering – or who might use what they can learn from us to be better at some other branch of software engineering.

And as always, we have a bunch of work on, and we’re hiring.

So, I have two things to ask. Firstly, if you have feedback on our job ad, please reach out! I’m always trying to improve these things.

Secondly, if you’re a software engineer who cares about the difference between GitFlow and GithubFlow; who has made calls to the Octopus API; or who loves showing other developers how to write a better test or add more context to a log message; please talk to me about joining Elabor8. We’re a bunch of software engineers who care about DevOps – and our users aren’t just one team, but a range of teams across some really great clients. If you want to take the engineering you care about and have a broader impact on more people, you want to join us. Get in touch.

Anatomy of a Job Ad

Wanted: Senior DBA!

  • Minimum 10 years experience managing SQL Server 2015 or newer

It’s a classic joke – the job ad which wants you to have experience in a specific technology for longer than it’s existed. Sadly, it’s funny because there’s a grain of truth in it: job ads are terrible.

pexels-photo-52608 (Small)Wanted: Junior Developer

  • 1-2 years experience writing software
  • Strong knowledge of SQL, git, Python, Haskell, and Perl
  • Good UI skills, excellent API design skills, knowledge of ESBs and other distributed software patterns
  • Excellent grounding in the principles of good software design and Agile project delivery
  • Experience with [you usually find a list of specific platforms and libraries here]
  • Go-getter, always-be-learning attitude
  • Highly regarded: strong maths and stats skills, C++ experience
  • Highly regarded: exposure to data science, experience with Big Data platforms such as Hadoop
  • Excellent communication skills are a must!

I hate seeing job ads like this one. You want someone with 1-2 years’ experience to know all of that – and be confident enough to tell a recruiter that, and back it up in an interview? You’re not selecting for capability here. You’re selecting for over-confidence, and the coincidence of having a first job which involved just the right mix of technologies.

Technology Leadership Position!

Are you a dynamic leader with top-notch management skills and brilliant technical ability? Do you have world-class knowledge of big data platforms and machine learning? Are you just as comfortable writing a PhD dissertation as you are selling a group of executives on a new company strategy? Do you have a passion for creating a dynamic company culture and mentoring a team of brilliant engineers, all while maintaining an unwavering focus on creating an unmatched user experience? Do we have a job for you!

If you’re posting a job ad like this one, you’d better have a remuneration package to match; but you probably don’t. The technology industry is full of people with imposter syndrome – and if the perfect applicant (who would have been great for your team) didn’t have it before they read this job ad, they will afterward. If the candidate who does meet that brief exists, they’re definitely not reading job ads on Seek, anyway.

These are, of course, caricatures, but they’re not so different from real job ads I’ve seen. How about a real example from my own life?

Checkbox Syndrome

Many years ago, I landed a job in the United States (I’m based in Australia, so this would have been a big move for me). The recruiter explained that the job had been open for nearly two years, and they were thrilled to have found me! I was their first suitable candidate, and they were keen to rush me through the hiring process.

This puzzled me, because I’m not that special. How was I the first suitable candidate in two years?

Well, it turns out that they’d written a very specific candidate description, and someone in HR had been handed the job of finding someone that matched. They were after someone who listed optimising high-throughput transactional systems on their LinkedIn profile, and who had completed at least two years of tertiary study in Latin or Ancient Greek.

They were building some language-processing software, and someone had decided that an engineer with a background in linguistics would be good to have on the team. That was somehow translated to requiring some tertiary education in a classical language – and bam! Two years of turning down candidates who probably would have been highly successful in the role. All they actually wanted me to do was to come up with a way to load-test the system, and then find hot-spots in the code and optimise them.

I never did end up moving to Houston: my visa application fell through (thanks, Global Financial Crisis). It was probably for the best: I wouldn’t have been a person to this company, or even an engineer; just a series of checkboxes.

What is a job ad for, anyway?

When you’re writing a job ad, please don’t forget what the ad is for. Your goal is to attract suitable applicants to apply, and discourage unsuitable applicants. Anything which doesn’t accomplish one of those two things is wasteful. Anything which discourages suitable applicants is a net loss.

As a specific example of this, please leave “Good Communication Skills” out of your ad. You might think that poor communication skills will disqualify a candidate – but putting that in the ad isn’t going to stop unsuitable candidates from applying, and it’s not going to encourage suitable candidates to apply. It’s noise. Leave it out.

Sell the job – genuinely

It all starts with empathy. Try to imagine yourself as your target engineer, tester, analyst, or whoever you’re trying to hire. Your goal is to sell them on the job, but also keep enough important criteria in there to discourage unsuitable applicants. The selling part is important: if there aren’t many great candidates out there, you need a job ad which will attract them. Candidates are about to invest a significant amount of their own, personal, outside-work time in applying for and interviewing at your company, and then you’re going to ask them to resign from their current position, where they have friends and valued colleagues and know the system, to join your team. Give them good reasons.

Please don’t give them a sales pitch. Don’t spend most of the ad spruiking the company. Talking about how great you are is for your marketing material, or your annual shareholders’ report.

Just talk honestly about your culture, values, and benefits.

Anatomy of a Good job ad

Here it is. This is what your job ad should look like.

  • Talk about the role.
    Tell prospective candidates a little bit about the company and the role. This should be short. What does your company do? Who are you looking for? How will this position further the company’s mission?
  • Say who you’re looking for.
    Really cut it down. Don’t have 10 bullet points. Keep it to 3 or 4. Try to focus on higher-order skillsets, rather than specific technologies, unless that technology really is core to the role.
    If “Good Communication Skills” is making it to your short-list of 3 or 4 key skillsets, I hope you’re hiring a radio operator or air traffic controller. Otherwise, please, just leave it off.
  • Tell them what’s in it for them.
    Describe your benefits. Tell them about the great company culture. Talk about training and conference budgets and career opportunities. Once again, keep it short and to the point.
    If you can’t think of anything to put here, you might have bigger problems.
  • Tell them how to apply.

That’s it. Really. No nice-to-haves – those just give suitable candidates a reason not to apply. Don’t do that. If you get two suitable candidates, and one of them happens to have one of your nice-to-haves, you might still offer the role to the other based on the bigger picture. If it’s not necessarily a differentiator even at the end of the recruitment process, it definitely has no place at the beginning.

But I want to list a bunch of stuff!

Resist the temptation. Are you hiring a team lead? Just say you’re hiring a team lead. Don’t list out all the stuff that team leads need to do.

  • Lead a team of software experts to deliver innovative products.
  • Help to work with product owners to deliver real business value!
  • Mentor senior engineers, and help them to mentor juniors.
  • Engage with the business about technical challenges.
  • Foster a strong team culture.

Don’t do this! Team leads already know the day-to-day detail of the role, and they won’t be going back to the job ad to work out how to spend their time. Just say that you’re looking for an experienced team lead or a senior engineer looking to step up to a team lead role – and get on to covering the more important points! What kind of team is it? What is the team mission? Are you looking for someone to drive a major change, to keep an already-high-performing team pointed in the right direction, or to build a whole new team? That stuff is much more useful than saying things like “Ensuring the team is aligned with business priorities”.

Where do I put things like “Strong work ethic” and “Ability to work in a collaborative team environment”?

In the same place you put “Good Communication Skills”. People who don’t have a strong work ethic or the ability to work in teams are going to apply anyway, so all you’re doing is making the job ad longer and more boring.

This sounds like you’re a really cool person and I’d like to work with you.

Readify is always looking for great people.

Wait, was this secretly a job ad?

No. This doesn’t match my “Anatomy of a Good job ad” at all! But recruitment is bigger than just job ads, and this was, secretly, a bit of guerrilla recruitment. That’s another idea I’m hoping you’ll take away from this post: recruitment is about a lot more than just writing a good job ad. It’s about being a place people will want to work, and making sure the right people know it.

Measure What Matters

What’s your average API response time? Do you know? Is it important to your business? What about the 90th percentile? Do response times suffer during peak demand?

Do you think about those questions? How about these ones:

How long does it take to get a software change reviewed? Do you know? Is it important to your business? Is it a bottleneck? Do reviews get skipped during busy periods?

If you care about code reviews, you should measure them. Put them on your system dashboard. They’re as much an indicator of the health of your software environment as your API response times. Minimising Work In Progress and Mean-Time-To-Release are important parts of your QA process, and making sure your pull requests are reviewed and merged in a timely fashion is a great way to improve those numbers.

What existing products are there out there to do this? Depending on the tools you use, you can probably pull out a few relevant reports. Jira is popular, and I’ve seen PMs produce some great graphs to include in their monthly management update. The problem is, the numbers you get out of these tools don’t give you direct, real-time feedback. Their very nature as longer-term averages mean they can’t represent a call to action.

Enter TeamLab

As a software shop, if the tools I’m using don’t do what I want, I have an option: build something. This is a dangerous option to have, and countless business hours have been wasted solving the wrong problems, but I really needed a nice visual prompt of how we’re doing at our code reviews in-the-moment. I also wanted a side-project for the team to tinker with new ideas for writing web applications – so even if the project didn’t turn out to be useful, the experiment would teach us something.

I had a specific technology I wanted to try out: React Storybook. This is a really nice way to visualise your React components in various different states, and I wanted something relevant to use as a demo for the team. It was very quick and easy to get up and running with a create-react-app project including Storybook, and I hacked together a quick picture of what my PR display should look like:
Storybook10PRs
On the right, you can see my quick mock-up of a board displaying ten pull requests, and the left is the Storybook control panel.

I decided it would be useful to colour-code the pull requests, and display any reviewers and approvers on the PR cards. A new PR is yellow, and an approved one is green. A PR with reviewers turns blue, and most importantly, any PR which is older than 48 hours turns red.
StorybookPRs

This was a nice little mock-up, but there was no real data behind it at this stage. Fortunately, the Git server we use has a fairly straightforward API, and so it didn’t take long to get some real data behind this component.
TeamLabPRs

It’s really easy to see when we have PRs which are starting to get stale, and need attention. Quick – at a glance, how many PRs here have been hanging around too long and need attention?
MorePRs

This has become the go-to way of seeing our outstanding PRs at a glance, and has since gone up on a big screen on the wall in our dev team office. I soon got requests for a few other widgets to go on the same dashboard, and our little side project has become a key part of our DevOps toolkit.
TVDashboard

Has It Worked?

Having those cards up where we can see them during the day has been good – but the biggest signal is during stand-up each morning. A quick glance at the TeamLab PR board has become part of the ritual, and if those cards start to build up – especially if they start to turn red – the team has a really strong signal that we’re getting behind on our code reviews.

I don’t currently have a report which tells me the Mean-Time-To-Merge for our PRs – but I don’t think I need it. Mean-Time-To-Merge isn’t as strong or immediate a signal as a pile of glaring red PR cards looming over our morning stand-up, nor does it provide the immediate sense of relief when we clear the board.

What Next?

I’m not sure what will go on the dashboard next, but I have some idea what kinds of things I’m looking for.

I need things I can measure – things I can pull straight out of an API. Things which can directly influence numbers like Mean-Time-To-Release – but I don’t want to display averages like that. I’m going to give people a dial they can turn directly. I’ll pick an angry colour like red for things which are outside targets, and nice friendly colours like blue and green for things which are on track. Once something is off the list, I’ll make it go away.

In short, I want to find things which I can measure, which team members can directly influence, and which will improve our overall quality – and I want to put them up where everyone can see them.

%d bloggers like this: